Slurm Burst Buffer Guide
- Overview
- Configuration (for system administrators)
- Lua Implementation (for system administrators)
- Burst Buffer Resources
- Job Submission Commands
- Persistent Burst Buffer Creation and Deletion Directives
- Command-line Job Options
- Symbol Replacement
- Status Commands
- Advanced Reservations
- Job Dependencies
- Burst Buffer States and Job States
Overview
This guide explains how to use Slurm burst buffer plugins. Where appropriate, it explains how these plugins work in order to give guidance about how to best use these plugins.
The Slurm burst buffer plugins call a script at different points during the lifetime of a job:
- At job submission
- While the job is pending after an estimated start time is established. This is called “stage-in.”
- Once the job has been scheduled but has not started running yet. This is called “pre-run.”
- Once the job has completed or been cancelled, but Slurm has not released resources for the job yet. This is called “stage-out.”
- Once the job has completed, and Slurm has released resources for the job. This is called “teardown.”
This script runs on the slurmctld node. These are the supported plugins:
- datawarp
- lua
Datawarp
This plugin provides hooks to Cray’s Datawarp APIs. Datawarp implements burst buffers, which are a shared high-speed storage resource. Slurm provides support for allocating these resources, staging files in, scheduling compute nodes for jobs using these resources, and staging files out. Burst buffers can also be used as temporary storage during a job's lifetime, without file staging. Another typical use case is for persistent storage, not associated with any specific job.
Lua
This plugin provides hooks to an API that is defined by a Lua script. This plugin was developed to provide system administrators with a way to do any task (not only file staging) at different points in a job’s life cycle. These tasks might include file staging, node maintenance, or any other task that is desired to run during one or more of the five job states listed above.
The burst buffer APIs will only be called for a job that specifically requests using them. The Job Submission Commands section explains how a job can request using the burst buffer APIs.
Configuration (for system administrators)
Common Configuration
- To enable a burst buffer plugin, set
BurstBufferType
in slurm.conf. If it is not set, then no burst buffer plugin will be loaded. Only one burst buffer plugin may be specified. - In slurm.conf, you may set
DebugFlags=BurstBuffer
for detailed logging from the burst buffer plugin. This will result in very verbose logging and is not intended for prolonged use in a production system, but this may be useful for debugging. - TRES limits for burst buffers can be
configured by association or QOS in the same way that TRES limits can be
configured for nodes, CPUs, or any GRES. To make Slurm track burst buffer
resources, add
bb/datawarp
(for the datawarp plugin) orbb/lua
(for the lua plugin) toAccountingStorageTres
in slurm.conf. - The size of a job's burst buffer requirements can be used as a factor in setting the job priority as described in the multifactor priority document. The Burst Buffer Resources section explains how these resources are defined.
- Burst-buffer-specific configurations can be set in burst_buffer.conf. Configuration settings include things like which users may use burst buffers, timeouts, paths to burst buffer scripts, etc. See the burst_buffer.conf manual for more information.
- The JSON-C library must be installed in order to build Slurm’s
burst_buffer/datawarp
andburst_buffer/lua
plugins, which must parse JSON format data. See Slurm's JSON installation information for details.
Datawarp
slurm.conf:
BurstBufferType=burst_buffer/datawarp
The datawarp plugin calls two scripts:
- dw_wlm_cli - the Slurm burst_buffer/datawarp plugin calls this script to perform burst buffer functions. It should have been provided by Cray. The location of this script is defined by GetSysState in burst_buffer.conf. A template of this script is provided with Slurm:
- dwstat - the Slurm burst_buffer/datawarp plugin calls this script to get status information. It should have been provided by Cray. The location of this script is defined by GetSysStatus in burst_buffer.conf. A template of this script is provided with Slurm:
src/plugins/burst_buffer/datawarp/dw_wlm_cli
src/plugins/burst_buffer/datawarp/dwstat
Lua
slurm.conf:
BurstBufferType=burst_buffer/lua
The lua plugin calls a single script which must be named burst_buffer.lua. This script needs to exist in the same directory as slurm.conf. The following functions are required to exist, although they may do nothing but return success:
slurm_bb_job_process
slurm_bb_pools
slurm_bb_job_teardown
slurm_bb_setup
slurm_bb_data_in
slurm_bb_real_size
slurm_bb_paths
slurm_bb_pre_run
slurm_bb_post_run
slurm_bb_data_out
slurm_bb_get_status
A template of burst_buffer.lua is provided with Slurm:
etc/burst_buffer.lua.example
This template documents many more details about the functions such as required parameters, when each function is called, return values for each function, and some simple examples.
Lua Implementation
This purpose of this section is to provide additional information about the Lua plugin to help system administrators who desire to implement the Lua API. The most important points in this section are:
- Some functions in burst_buffer.lua must run quickly and cannot be killed; the remaining functions are allowed to run for as long as needed and can be killed.
- A maximum of 512 copies of burst_buffer.lua are allowed to run concurrently in order to avoid exceeding system limits.
How does burst_buffer.lua run?
Lua scripts may either be run by themselves in a separate process via the
fork()
and exec()
system calls, or they may be called
via Lua's C API from within an existing process. One of the goals of the lua
plugin was to avoid calling fork()
from within slurmctld because
it can severely harm performance of the slurmctld. The datawarp plugin calls
fork()
and exec()
from slurmctld for every burst
buffer API call, and this has been shown to severely harm slurmctld
performance. Therefore, slurmctld calls burst_buffer.lua using Lua's C API
instead of using fork()
.
Some functions in burst_buffer.lua are allowed to run for a long time, but they may need to be killed if the job is cancelled, if slurmctld is restarted, or if they run for longer than the configured timeout in burst_buffer.conf. However, a call to a Lua script via Lua's C API cannot be killed from within the same process; only killing the entire process that called the Lua script can kill the Lua script.
To address this situation, burst_buffer.lua is called in two different ways:
- The
slurm_bb_job_process
,slurm_bb_pools
andslurm_bb_paths
functions are called from slurmctld. Because of the explanation above, a script running one of these functions cannot be killed. Since these functions are called while slurmctld holds some mutexes, it will be extremely harmful to slurmctld performance and responsiveness if they are slow. Because it is faster to call these functions directly than to callfork()
to create a new process, this was deemed an acceptable tradeoff. As a result, these functions cannot be killed. - The remaining functions in burst_buffer.lua are able to run longer without
adverse effects. These need to be able to be killed. These functions are called
from a lightweight Slurm daemon called slurmscriptd. Whenever one of these
functions needs to run, slurmctld tells slurmscriptd to run that function;
slurmscriptd then calls
fork()
to create a new process, then calls the appropriate function. This avoids callingfork()
from slurmctld while still providing a way to kill running copies of burst_buffer.lua when needed. As a result, these functions can be killed, and they will be killed if they run for longer than the appropriate timeout value as configured in burst_buffer.conf.
The way in which each function is called is also documented in the burst_buffer.lua.example file.
Limitations
Each copy of the script that runs via slurmscriptd runs in a new process and a pipe (which is a file) is opened to read responses from the script. To avoid exceeding the open process or open file limits, running out of memory, or exceeding other system limitations, a maximum of 128 copies of the script are allowed to run concurrently per "stage", where the stages are stage-in, pre-run, stage-out, and teardown (see the Burst Buffer States section for more information on the burst buffer stages). This means that a maximum of 512 copies of burst_buffer.lua may run at one time. Without this limit, job throughput was lower and testing confirmed that the process open file limit could be exceeded.
WARNING: Do not install a signal handler in burst_buffer.lua because it is called directly from slurmctld. If slurmctld receives a signal, it could attempt to run the signal handler from burst_buffer.lua, even after a call to burst_buffer.lua is completed, which results in a crash.
Burst Buffer Resources
The burst buffer API may define burst buffer resource “pools” from which a job may request a certain amount of pool space. If a pool does not have sufficient space to fulfill a job’s request, that job will remain pending until the pool does have enough space. Once the pool has enough space, Slurm may begin stage-in for the job. When stage-in begins, Slurm subtracts the job’s requested space from the pool’s available space. When teardown completes, Slurm adds the job’s requested space back into the pool’s available space. The Job Submission Commands section explains how a job may request space from a pool. Pool space is a scalar quantity.
Datawarp
- Pools are defined by
dw_wlm_cli
, and represent bytes. This script prints a JSON-formatted string defining the pools to stdout. - If a job does not request a pool, then the pool defined by
DefaultPool
in burst_buffer.conf will be used. If a job does not request a pool andDefaultPool
is not defined, then the job will be rejected.
Lua
- Pools are optional in this plugin, and can represent anything.
DefaultPool
in burst_buffer.conf is not used in this plugin.- Pools are defined by burst_buffer.lua in the function
slurm_bb_pools
. If pools are not desired, then this function should just returnslurm.SUCCESS
. If pools are desired, then this function should return two values: (1)slurm.SUCCESS
, and (2) a JSON-formatted string defining the pools. An example is provided in burst_buffer.lua.example. The current valid fields in the JSON string are: - id - a string defining the name of the pool
- quantity - a number defining the amount of space in the pool
- granularity - a number defining the lowest resolution of space that may be allocated from this pool. If a job does not request a number that is a multiple of granularity, then the job's request will be rounded up to the nearest multiple of granularity. For example, if granularity equals 1000, then the smallest amount of space that may be allocated from this pool for a single job is 1000. If a job requests less than 1000 units from this pool, then the job's request will be rounded up to 1000.
Job Submission Commands
The normal mode of operation is for batch jobs to specify burst buffer requirements within the batch script. Commented batch script lines containing a specific directive (depending on which plugin is being used) will inform Slurm that it should run the burst buffer stages for that job. These lines will also describe the burst buffer requirements for the job.
The salloc and srun commands can specify burst buffer requirements with the
--bb
and --bbf
options. This is described in the
Command-line Job Options section.
All burst buffer directives should be specified in comments at the top of
the batch script. They may be placed before, after, or interspersed with any
#SBATCH
directives. All burst buffer stages happen at specific
points in the job's life cycle, as described in the
Overview section; they do not happen during the job's
execution. For example, all of the persistent burst buffer (used only by the
datawarp plugin) creations and deletions happen before the job's compute
portion happens. In a similar fashion, you can't run stage-in at various points
in the script execution; burst buffer stage-in is performed before the job
begins and stage-out is performed after the job completes.
For both plugins, a job may request a certain amount of space (size or capacity) from a burst buffer resource pool.
- A pool specification is simply a string that matches the name of the
pool. For example:
pool=pool1
- A capacity specification is a number indicating the amount of space required from the pool. A capacity specification can include a suffix of "N" (nodes), "K|KiB", "M|MiB", "G|GiB", "T|TiB", "P|PiB" (for powers of 1024) and "KB", "MB", "GB", "TB", "PB" (for powers of 1000). NOTE: Usually Slurm interprets KB, MB, GB, TB, PB, TB units as powers of 1024, but for Burst Buffers size specifications Slurm supports both IEC/SI formats. This is because the CRAY API supports both formats.
At job submission, Slurm performs basic directive validation and also runs a function in the burst buffer script. This function can perform validation of the directives used in the job script. If Slurm determines options are invalid, or if the burst buffer script returns an error, the job will be rejected and an error message will be returned directly to the user.
Note that unrecognized options may be ignored in order to support backward compatibility (i.e. a job submission would not fail in the case of an option recognized by some versions of Slurm, but not recognized by other versions). If the job is accepted, but later fails (e.g. some problem staging files), the job will be held and its "Reason" field will be set to an error message provided by the underlying infrastructure.
Users may also request to be notified by email upon completion of burst
buffer stage out using the --mail-type=stage_out
or
--mail-type=all
option. The subject line of the email will be of
this form:
SLURM Job_id=12 Name=my_app Staged Out, StageOut time 00:05:07
The following plugin subsections give additional information that is specific to each plugin and provide example job scripts. Command-line examples are given in the Command-line Job Options section.
Datawarp
The directive of #DW
(for "DataWarp") is used for burst buffer
directives when using the burst_buffer/datawarp
plugin. Please
reference Cray documentation for details about the DataWarp options. For
DataWarp systems, the directive of #BB
can be used to create or
delete persistent burst buffer storage.
NOTE: The #BB
directive is used since the
command is interpreted by Slurm and not by the Cray Datawarp software. This is
discussed more in the Persistent Burst Buffer
section.
For job-specific burst buffers, it is required to specify a burst buffer capacity. If the job does not specify capacity then the job will be rejected. A job may also specify the pool from which it wants resources; if the job does not specify a pool, then the pool specified by DefaultPool in burst_buffer.conf will be used (if configured).
The following job script requests burst buffer resources from the default pool and requests files to be staged in and staged out:
#!/bin/bash #DW jobdw type=scratch capacity=1GB access_mode=striped,private pfs=/scratch #DW stage_in type=file source=/tmp/a destination=/ss/file1 #DW stage_out type=file destination=/tmp/b source=/ss/file1 srun application.sh
Lua
The default directive for this plugin is #BB_LUA
. The directive
used by this plugin may be changed by setting the Directive option in
burst_buffer.conf. Since the directive must always begin with a #
sign (which starts a comment in a shell script) this option should specify only
the string following the #
sign. For example, if burst_buffer.conf
contains the following:
Directive=BB_EXAMPLE
then the burst buffer directive will be #BB_EXAMPLE
.
If the Directive option is not specified in burst_buffer.conf, then
the default directive for this plugin (#BB_LUA
) will be used.
Since this plugin was designed to be generic and flexible, this plugin only requires the directive to be given. If the directive is given, Slurm will run all burst buffer stages for the job.
Example of the minimum information required for all burst buffer stages to run for the job:
#!/bin/bash #BB_LUA srun application.sh
Because burst buffer pools are optional for this plugin (see the Burst Buffer Resources section), a job is not required to specify a pool or capacity. If pools are provided by the burst buffer API, then a job may request a pool and capacity:
#!/bin/bash #BB_LUA pool=pool1 capacity=1K srun application.sh
A job may choose whether or not to specify a pool. If a job does not specify a pool, then the job is still allowed to run and the burst buffer stages will still run for this job (as long as the burst buffer directive was given). If the job specifies a pool but that pool is not found, then the job is rejected.
The system administrator may validate burst buffer options in the
slurm_bb_job_process
function in burst_buffer.lua. This might
include requiring a job to specify a pool or validating any additional options
that the system administrator decides to implement.
Persistent Burst Buffer Creation and Deletion Directives
This section only applies to the datawarp plugin, since persistent burst buffers are not used in any other burst buffer plugin.
These options are used to create and delete persistent burst buffers:
#BB create_persistent name=<name> capacity=<number> [access=<access>] [pool=<pool> [type=<type>]
#BB destroy_persistent name=<name> [hurry]
Options for creating and deleting persistent burst buffers:
- name - The persistent burst buffer name may not start with a numeric value (numeric names are reserved for job-specific burst buffers).
- capacity - Described in the Job Submission Commands section.
- pool - Described in the Job Submission Commands section.
- access - The access parameter identifies the buffer access mode. Supported access modes for the datawarp plugin include:
- striped
- private
- ldbalance
- type - The type parameter identifies the buffer type. Supported type modes for the datawarp plugin include:
- cache
- scratch
Multiple persistent burst buffers may be created or deleted within a single job.
Example - Creating two persistent burst buffers:
#!/bin/bash #BB create_persistent name=alpha capacity=32GB access=striped type=scratch #BB create_persistent name=beta capacity=16GB access=striped type=scratch srun application.sh
Example - Destroying two persistent burst buffers:
#!/bin/bash #BB destroy_persistent name=alpha #BB destroy_persistent name=beta srun application.sh
Persistent burst buffers can be created and deleted by a job requiring no
compute resources. Submit a job with the desired burst buffer directives and
specify a node count of zero (e.g. sbatch -N0 setup_buffers.bash
).
Attempts to submit a zero size job without burst buffer directives or with
job-specific burst buffer directives will generate an error. Note that zero
size jobs are not supported for job arrays or heterogeneous job
allocations.
NOTE: The ability to create and destroy persistent burst buffers may
be limited by the Flags
option in the burst_buffer.conf file.
See the burst_buffer.conf man page for
more information.
By default only privileged users
(i.e. Slurm operators and administrators)
can create or destroy persistent burst buffers.
Command-line Job Options
In addition to putting burst buffer directives in the batch script, the
command-line options --bb
and --bbf
may also include
burst buffer directives. These command-line options are available for salloc,
sbatch, and srun. Note that the --bb
option cannot create or
destroy persistent burst buffers.
The --bbf
option takes as an argument a filename and that file
should contain a collection of burst buffer operations identical to those used
for batch jobs.
Alternatively, the --bb
option may be used to specify burst
buffer directives as the option argument. The behavior of this option depends
on which burst buffer plugin is used. When the --bb
option is
used, Slurm parses this option and creates a temporary burst buffer script file
that is used internally by the burst buffer plugins.
Datawarp
When using the --bb
option, the format of the directives can
either be identical to those used in a batch script OR a very limited set of
options can be used, which are translated to the equivalent script for later
processing. The following options are allowed:
access=<access>
capacity=<number>
swap=<number>
type=<type>
pool=<name>
Multiple options should be space separated. If a swap option is specified, the job must also specify the required node count.
Example:
# Sample execute line: srun --bb="capacity=1G access=striped type=scratch" a.out # Equivalent script as generated by Slurm's burst_buffer/datawarp plugin #DW jobdw capacity=1GiB access_mode=striped type=scratch
Lua
This plugin does not do any special parsing or translating of burst buffer
directives given by the --bb
option. When using the
--bb
option, the format is identical to the batch script: Slurm
only enforces that the burst buffer directive must be specified. See additional
information in the Lua subsection of Job Submission
Commands.
Example:
# Sample execute line: srun --bb="#BB_LUA pool=pool1 capacity=1K" # Equivalent script as generated by Slurm's burst_buffer/datawarp plugin #BB_LUA pool=pool1 capacity=1K
Symbol Replacement
Slurm supports a number of symbols that can be used to automatically fill in certain job details, e.g. to make stage-in or stage-out directory paths vary with each job submission.
Supported symbols include:
%% | % |
%A | Array Master Job Id |
%a | Array Task Id |
%d | Workdir |
%j | Job Id |
%u | User Name |
%x | Job Name |
\\ | Stop further processing of the line |
Status Commands
Burst buffer information that Slurm tracks is available by using the
scontrol show burst
command or by using the sview command's
Burst Buffer tab. Examples follow.
Datawarp plugin example:
$ scontrol show burst Name=datawarp DefaultPool=wlm_pool Granularity=200GiB TotalSpace=5800GiB FreeSpace=4600GiB UsedSpace=1600GiB Flags=EmulateCray StageInTimeout=86400 StageOutTimeout=86400 ValidateTimeout=5 OtherTimeout=300 GetSysState=/home/marshall/slurm/master/install/c1/sbin/dw_wlm_cli GetSysStatus=/home/marshall/slurm/master/install/c1/sbin/dwstat Allocated Buffers: JobID=169509 CreateTime=2021-08-11T10:19:06 Pool=wlm_pool Size=1200GiB State=allocated UserID=marshall(1017) JobID=169508 CreateTime=2021-08-11T10:18:46 Pool=wlm_pool Size=400GiB State=staged-in UserID=marshall(1017) Per User Buffer Use: UserID=marshall(1017) Used=1600GiB
Lua plugin example:
$ scontrol show burst Name=lua DefaultPool=(null) Granularity=1 TotalSpace=0 FreeSpace=0 UsedSpace=0 PoolName[0]=pool1 Granularity=1KiB TotalSpace=10000KiB FreeSpace=9750KiB UsedSpace=250KiB PoolName[1]=pool2 Granularity=2 TotalSpace=10 FreeSpace=10 UsedSpace=0 PoolName[2]=pool3 Granularity=1 TotalSpace=4 FreeSpace=4 UsedSpace=0 PoolName[3]=pool4 Granularity=1 TotalSpace=5GB FreeSpace=4GB UsedSpace=1GB Flags=DisablePersistent StageInTimeout=86400 StageOutTimeout=86400 ValidateTimeout=5 OtherTimeout=300 GetSysState=(null) GetSysStatus=(null) Allocated Buffers: JobID=169504 CreateTime=2021-08-11T10:13:38 Pool=pool1 Size=250KiB State=allocated UserID=marshall(1017) JobID=169502 CreateTime=2021-08-11T10:12:06 Pool=pool4 Size=1GB State=allocated UserID=marshall(1017) Per User Buffer Use: UserID=marshall(1017) Used=1000256KB
Access to a burst buffer status API is available from scontrol using the
scontrol show bbstat ...
or scontrol show dwstat ...
commands. Options following bbstat
or dwstat
on the
scontrol execute line are passed directly to the bbstat or dwstat commands, as
shown below. In the datawarp plugin, this command calls Cray's dwstat script.
See Cray Datawarp documentation for details about dwstat options and output. In
the lua plugin, this command calls the slurm_bb_get_status
function in burst_buffer.lua. Examples follow.
Datawarp plugin example:
/opt/cray/dws/default/bin/dwstat $ scontrol show dwstat pool units quantity free gran' wlm_pool bytes 7.28TiB 7.28TiB 1GiB' $ scontrol show dwstat sessions sess state token creator owner created expiration nodes 832 CA--- 783000000 tester 12345 2015-09-08T16:20:36 never 20 833 CA--- 784100000 tester 12345 2015-09-08T16:21:36 never 1 903 D---- 1875700000 tester 12345 2015-09-08T17:26:05 never 0 $ scontrol show dwstat configurations conf state inst type access_type activs 715 CA--- 753 scratch stripe 1 716 CA--- 754 scratch stripe 1 759 D--T- 807 scratch stripe 0 760 CA--- 808 scratch stripe 1
Lua plugin example:
This example doesn't do anything useful; it just shows how this call is used.
-- Implement this function in burst_buffer.lua function slurm_bb_get_status(...) local i, v, args, outstr, arr arr = { } -- Create a table from variable arg list args = {...} args.n = select("#", ...) for i,v in ipairs(args) do arr[#arr+1] = tostring(v) end outstr = table.concat(arr, "\n") return slurm.SUCCESS, "Status return message.\nArgs:\n" .. outstr .. "\n" end
$ scontrol show bbstat arg1 arg2 Status return message. Args: arg1 arg2
Advanced Reservations
Burst buffer resources can be placed in an advanced reservation using the
BurstBuffer option.
The argument consists of four elements:
[plugin:][pool:]#[units]
- plugin is the burst buffer plugin name, currently either "datawarp" or "lua".
- pool specifies a burst buffer resource pool. If "type" is not specified, the number is a measure of storage space.
- # (meaning number) should be replaced with a positive integer.
- units has the same format as the suffix of capacity in the Job Submission Commands section.
Jobs using this reservation are not restricted to these burst buffer resources, but may use these reserved resources plus any which are generally available. Some examples follow.
$ scontrol create reservation starttime=now duration=60 \ users=alan flags=any_nodes \ burstbuffer=datawarp:100G $ scontrol create reservation StartTime=noon duration=60 \ users=brenda NodeCnt=8 \ BurstBuffer=datawarp:20G $ scontrol create reservation StartTime=16:00 duration=60 \ users=joseph flags=any_nodes \ BurstBuffer=datawarp:pool_test:4G
Job Dependencies
If two jobs use burst buffers and one is dependent on the other (e.g.
sbatch --dependency=afterok:123 ...
) then the second job will not
begin until the first job completes and its burst buffer stage-out completes.
If the second job does not use a burst buffer, but is dependent upon the first
job's completion, then it will not wait for the stage-out operation of the first
job to complete.
The second job can be made to wait for the first job's stage-out operation to
complete using the "afterburstbuffer" dependency option (e.g.
sbatch --dependency=afterburstbuffer:123 ...
).
Burst Buffer States and Job States
These are the different possible burst buffer states:
pending
allocating
allocated
deleting
deleted
staging-in
staged-in
pre-run
alloc-revoke
running
suspended
post-run
staging-out
teardown
teardown-fail
complete
These states appear in the "BurstBufferState" field in the output of
scontrol show job
. This field only appears for jobs that requested
a burst buffer. The states allocating
, allocated
,
deleting
and deleted
are used
for persistent burst buffers only (not for job-specific burst buffers). The
state alloc-revoke
happens if a failure in Slurm's select plugin
occurs in between Slurm allocating resources for a job and actually starting
the job. This should never happen.
When a job requests a burst buffer, this is what the job and burst buffer state transitions look like:
- Job is submitted. Job state and burst buffer state are both
pending
. - Burst buffer stage-in starts. Job state:
pending
with reason:BurstBufferStageIn
. Burst buffer state:staging-in
. - When stage-in completes, the job is eligible to be scheduled (barring any
other limits). Job state:
pending
. Burst buffer state:staged-in
. - When the job is scheduled and allocated resources, the burst buffer pre-run
stage begins. Job state:
running+configuring
. Burst buffer state:pre-run
. - When pre-run finishes, the
configuring
flag is cleared from the job and the job can actually start running. Job state and burst buffer state are bothrunning
. - When the job completes (even if it fails), burst buffer stage-out starts.
Job state:
stage-out
. Burst buffer state:staging-out
. - When stage-out completes, teardown starts. Job state:
complete
. Burst buffer state:teardown
.
There are some situations which will change the state transitions. Examples include:
- Burst buffer operation failures:
- If teardown fails, then the burst buffer state changes to teardown-fail. Teardown will be retried. For the burst_buffer/lua plugin, teardown will run a maximum of 3 times before giving up and destroying the burst buffer.
- If either stage-in or stage-out fail and Flags=teardownFailure is
configured in burst_buffer.conf, then teardown runs. Otherwise, the job
is held and the burst buffer remains in the same state so it may be
inspected and manually destroyed with
scancel --hurry
. - If pre-run fails, then the job is held and teardown runs.
- When a job is cancelled, the current burst buffer script for that job
(if running) is killed. If
scancel --hurry
was used, or if the job never ran, stage-out is skipped and it goes straight to teardown. Otherwise, stage-out begins. - If slurmctld is stopped, Slurm kills all running burst buffer scripts for all jobs and burst buffer state is saved for each job. When slurmctld restarts, for each job it reads the burst buffer state and does one of the following:
- Pending - Do nothing, since no burst buffer scripts were killed.
- Staging-in, staged-in - run teardown, wait for a short time, then restart stage-in.
- Pre-run - Restart pre-run.
- Running - Do nothing, since no burst buffer scripts were killed.
- Post-run, staging-out - Restart post-run.
- Teardown, teardown-fail - Restart teardown.
NOTE: There are many other things not listed here that affect the job state. This document focuses on burst buffers and does not attempt to address all possible job state transitions.
Last modified 13 August 2021